Bacalhau supports running programs that are compiled to WebAssembly (Wasm). With the Bacalhau client, you can upload Wasm programs, retrieve data from public storage, read and write data, receive program arguments, and access environment variables.
Supported WebAssembly System Interface (WASI) Bacalhau can run compiled Wasm programs that expect the WebAssembly System Interface (WASI) Snapshot 1. Through this interface, WebAssembly programs can access data, environment variables, and program arguments.
Networking Restrictions All ingress/egress networking is disabled; you won't be able to pull data/code/weights
etc. from an external source. Wasm jobs can say what data they need using URLs or CIDs (Content IDentifier) and can then access the data by reading from the filesystem.
Single-Threading There is no multi-threading as WASI does not expose any interface for it.
If your program typically involves reading from and writing to network endpoints, follow these steps to adapt it for Bacalhau:
Replace Network Operations: Instead of making HTTP requests to external servers (e.g., example.com), modify your program to read data from the local filesystem.
Input Data Handling: Specify the input data location in Bacalhau using the --input
flag when running the job. For instance, if your program used to fetch data from example.com
, read from the /inputs
folder locally, and provide the URL as input when executing the Bacalhau job. For example, --input http://example.com
.
Output Handling: Adjust your program to output results to standard output (stdout
) or standard error (stderr
) pipes. Alternatively, you can write results to the filesystem, typically into an output mount. In the case of Wasm jobs, a default folder at /outputs
is available, ensuring that data written there will persist after the job concludes.
By making these adjustments, you can effectively transition your program to operate within the Bacalhau environment, utilizing filesystem operations instead of traditional network interactions.
You can specify additional or different output mounts using the -o
flag.
You will need to compile your program to WebAssembly that expects WASI. Check the instructions for your compiler to see how to do this.
For example, Rust users can specify the wasm32-wasi
target to rustup
and cargo
to get programs compiled for WASI WebAssembly. See the Rust example for more information on this.
You can run a WebAssembly program on Bacalhau using the bacalhau wasm run
command.
Run Locally Compiled Program:
If your program is locally compiled, specify it as an argument. For instance, running the following command will upload and execute the main.wasm
program:
The program you specify will be uploaded to a Bacalhau storage node and will be publicly available if you are using the public demo network.
Consider creating your own private network.
Alternative Program Specification:
You can use a Content IDentifier (CID) for a specific WebAssembly program.
Input Data Specification:
Make sure to specify any input data using --input
flag.
This ensures the necessary data is available for the program's execution.
You can give the Wasm program arguments by specifying them after the program path or CID. If the Wasm program is already compiled and located in the current directory, you can run it by adding arguments after the file name:
For a specific WebAssembly program, run:
Write your program to use program arguments to specify input and output paths. This makes your program more flexible in handling different configurations of input and output volumes.
For example, instead of hard-coding your program to read from /inputs/data.txt
, accept a program argument that should contain the path and then specify the path as an argument to bacalhau wasm run
:
Your language of choice should contain a standard way of reading program arguments that will work with WASI.
You can also specify environment variables using the -e
flag.
See the Rust example for a workload that leverages WebAssembly support.
If you have questions or need support or guidance, please reach out to the Bacalhau team via Slack (#general channel)
Bacalhau supports running jobs as a WebAssembly (WASM) program. This example demonstrates how to compile a Rust project into WebAssembly and run the program on Bacalhau.
To get started, you need to install the Bacalhau client, see more information .
A working Rust installation with the wasm32-wasi
target. For example, you can use rustup
to install Rust and configure it to build WASM targets. For those using the notebook, these are installed in hidden cells below.
We can use cargo
(which will have been installed by rustup
) to start a new project (my-program
) and compile it:
We can then write a Rust program. Rust programs that run on Bacalhau can read and write files, access a simple clock, and make use of pseudo-random numbers. They cannot memory-map files or run code on multiple threads.
The program below will use the Rust imageproc
crate to resize an image through seam carving, based on an example from their repository.
In the main function main()
an image is loaded, the original is saved, and then a loop is performed to reduce the width of the image by removing "seams." The results of the process are saved, including the original image with drawn seams and a gradient image with highlighted seams.
We also need to install the imageproc
and image
libraries and switch off the default features to make sure that multi-threading is disabled (default-features = false
). After disabling the default features, you need to explicitly specify only the features that you need:
We can now build the Rust program into a WASM blob using cargo
:
This command navigates to the my-program
directory and builds the project using Cargo with the target set to wasm32-wasi
in release mode.
This will generate a WASM file at ./my-program/target/wasm32-wasi/release/my-program.wasm
which can now be run on Bacalhau.
Now that we have a WASM binary, we can upload it to IPFS and use it as input to a Bacalhau job.
The -i
flag allows specifying a URI to be mounted as a named volume in the job, which can be an IPFS CID, HTTP URL, or S3 object.
For this example, we are using an image of the Statue of Liberty that has been pinned to a storage facility.
bacalhau wasm run
: call to Bacalhau
./my-program/target/wasm32-wasi/release/my-program.wasm
: the path to the WASM file that will be executed
_start
: the entry point of the WASM program, where its execution begins
--id-only
: this flag indicates that only the identifier of the executed job should be returned
-i ipfs://bafybeifdpl6dw7atz6uealwjdklolvxrocavceorhb3eoq6y53cbtitbeu:/inputs
: input data volume that will be accessible within the job at the specified destination path
When a job is submitted, Bacalhau prints out the related job_id. We store that in an environment variable so that we can reuse it later on:
You can download your job results directly by using bacalhau job get
. Alternatively, you can choose to create a directory to store your results. In the command below, we created a directory (wasm_results
) and downloaded our job output to be stored in that directory.
We can now get the results.
When we view the files, we can see the original image, the resulting shrunk image, and the seams that were removed.
If you have questions or need support or guidance, please reach out to the Bacalhau team via Slack (#general channel).