Bacalhau Docs
GithubSlackBlogEnterprise
v1.6.x
  • Documentation
  • Use Cases
  • CLI & API
  • References
  • Community
v1.6.x
  • Welcome
  • Getting Started
    • How Bacalhau Works
    • Getting Started
      • Step 1: Install the Bacalhau CLI
      • Step 2: Running Your Own Job
      • Step 3: Checking on the Status of Your Job
    • Creating Your Own Bacalhau Network
      • Setting Up a Cluster on Amazon Web Services (AWS) with Terraform 🚀
      • Setting Up a Cluster on Google Cloud Platform (GCP) With Terraform 🚀
      • Setting Up a Cluster on Azure with Terraform 🚀
    • Hardware Setup
    • Container Onboarding
      • Docker Workloads
      • WebAssembly (Wasm) Workloads
  • Setting Up
    • Running Nodes
      • Node Onboarding
      • GPU Installation
      • Job selection policy
      • Access Management
      • Node persistence
      • Configuring Your Input Sources
      • Configuring Transport Level Security
      • Limits and Timeouts
      • Test Network Locally
      • Bacalhau WebUI
      • Private IPFS Network Setup
    • Workload Onboarding
      • Container
        • Docker Workload Onboarding
        • WebAssembly (Wasm) Workloads
        • Bacalhau Docker Image
        • How To Work With Custom Containers in Bacalhau
      • Python
        • Building and Running Custom Python Container
        • Running Pandas on Bacalhau
        • Running a Python Script
        • Running Jupyter Notebooks on Bacalhau
        • Scripting Bacalhau with Python
      • R (language)
        • Building and Running your Custom R Containers on Bacalhau
        • Running a Simple R Script on Bacalhau
      • Run CUDA programs on Bacalhau
      • Running a Prolog Script
      • Reading Data from Multiple S3 Buckets using Bacalhau
      • Running Rust programs as WebAssembly (WASM)
      • Generate Synthetic Data using Sparkov Data Generation technique
    • Networking Instructions
      • Accessing the Internet from Jobs
      • Utilizing NATS.io within Bacalhau
    • GPU Workloads Setup
    • Automatic Update Checking
    • Marketplace Deployments
      • Google Cloud Marketplace
    • Inter-Nodes TLS
  • Guides
    • Configuration Management
    • Write a config.yaml
    • Write a SpecConfig
    • Using Labels and Constraints
  • Examples
    • Table of Contents for Bacalhau Examples
    • Data Engineering
      • Using Bacalhau with DuckDB
      • Ethereum Blockchain Analysis with Ethereum-ETL and Bacalhau
      • Convert CSV To Parquet Or Avro
      • Simple Image Processing
      • Oceanography - Data Conversion
      • Video Processing
      • Bacalhau and BigQuery
    • Data Ingestion
      • Copy Data from URL to Public Storage
      • Pinning Data
      • Running a Job over S3 data
    • Model Inference
      • EasyOCR (Optical Character Recognition) on Bacalhau
      • Running Inference on Dolly 2.0 Model with Hugging Face
      • Speech Recognition using Whisper
      • Stable Diffusion on a GPU
      • Stable Diffusion on a CPU
      • Object Detection with YOLOv5 on Bacalhau
      • Generate Realistic Images using StyleGAN3 and Bacalhau
      • Stable Diffusion Checkpoint Inference
      • Running Inference on a Model stored on S3
    • Model Training
      • Training Pytorch Model with Bacalhau
      • Training Tensorflow Model
      • Stable Diffusion Dreambooth (Finetuning)
    • Molecular Dynamics
      • Running BIDS Apps on Bacalhau
      • Coresets On Bacalhau
      • Genomics Data Generation
      • Gromacs for Analysis
      • Molecular Simulation with OpenMM and Bacalhau
    • Systems Engineering
      • Ad-hoc log query using DuckDB
  • References
    • Jobs Guide
      • Job Specification
        • Job Types
        • Task Specification
          • Engines
            • Docker Engine Specification
            • WebAssembly (WASM) Engine Specification
          • Publishers
            • IPFS Publisher Specification
            • Local Publisher Specification
            • S3 Publisher Specification
          • Sources
            • IPFS Source Specification
            • Local Source Specification
            • S3 Source Specification
            • URL Source Specification
          • Network Specification
          • Input Source Specification
          • Resources Specification
          • ResultPath Specification
        • Constraint Specification
        • Labels Specification
        • Meta Specification
      • Job Templates
      • Queuing & Timeouts
        • Job Queuing
        • Timeouts Specification
      • Job Results
        • State
    • CLI Guide
      • Single CLI commands
        • Agent
          • Agent Overview
          • Agent Alive
          • Agent Node
          • Agent Version
        • Config
          • Config Overview
          • Config Auto-Resources
          • Config Default
          • Config List
          • Config Set
        • Job
          • Job Overview
          • Job Describe
          • Job Executions
          • Job History
          • Job List
          • Job Logs
          • Job Run
          • Job Stop
        • Node
          • Node Overview
          • Node Approve
          • Node Delete
          • Node List
          • Node Describe
          • Node Reject
      • Command Migration
    • API Guide
      • Bacalhau API overview
      • Best Practices
      • Agent Endpoint
      • Orchestrator Endpoint
      • Migration API
    • Node Management
    • Authentication & Authorization
    • Database Integration
    • Debugging
      • Debugging Failed Jobs
      • Debugging Locally
    • Running Locally In Devstack
    • Setting up Dev Environment
  • Help & FAQ
    • Bacalhau FAQs
    • Glossary
    • Release Notes
      • v1.5.0 Release Notes
      • v1.4.0 Release Notes
  • Integrations
    • Apache Airflow Provider for Bacalhau
    • Lilypad
    • Bacalhau Python SDK
    • Observability for WebAssembly Workloads
  • Community
    • Social Media
    • Style Guide
    • Ways to Contribute
Powered by GitBook
LogoLogo

Use Cases

  • Distributed ETL
  • Edge ML
  • Distributed Data Warehousing
  • Fleet Management

About Us

  • Who we are
  • What we value

News & Blog

  • Blog

Get Support

  • Request Enterprise Solutions

Expanso (2025). All Rights Reserved.

On this page
  • Description:
  • Usage
  • Flags
  • Examples

Was this helpful?

Export as PDF
  1. References
  2. CLI Guide
  3. Single CLI commands
  4. Config

Config Auto-Resources

Description:

The bacalhau config auto-resources command automatically configures compute resource values in the bacalhau node's configuration file based on the hardware resources of the user's machine. This command streamlines the process of resource allocation for jobs, dynamically adjusting settings to align with the capabilities of the machine. It is designed to simplify the task of resource management, ensuring that the node operates efficiently and effectively within the hardware's limits.

Note: The bacalhau config auto-resources command intelligently adjusts resource allocation settings based on the specific hardware configuration of your machine, promoting optimal utilization for bacalhau jobs. Due to the dynamic nature of this command, the specific values set in the configuration will vary depending on the available hardware resources of the machine in use. This functionality is particularly beneficial for users who seek to optimize their node's performance without the need for manual calculations of resource limits. It is important for users to understand that these settings will directly impact the number and types of jobs their node can manage at any given time, based on the machine's resource capacity.

Usage

bacalhau config auto-resources [flags]

Flags

  • --default-job-percentage int:

    • Description: Sets the default percentage of resources allocated for each job when specific limits are not defined. Acceptable values range from 1 to 100 (values over 100 are rejected).

    • Default: 75

  • --job-percentage int:

    • Description: Determines the percentage of resources that can be utilized at one time for a single job. Accept values from 1 to 100 (values over 100 are rejected).

    • Default: 75

  • --queue-job-percentage int:

    • Description: Specifies the total percentage of resources that the system can allocate for all jobs queued at one time. Accept values from 1 to 100 (values over 100 are accepted).

    • Default: 150

  • --total-percentage int:

    • Description: Indicates the total percentage of resources that the system can utilize at one time across all jobs. Accept values from 1 to 100 (values over 100 are rejected).

    • Default: 75

Examples

(Ran on an Apple M1 Max with 10 Cores and 64GB RAM)

  1. Basic Usage:

    Command:

    bacalhau config auto-resources

    Config File:

    node:
        compute:
            capacity:
                defaultjobresourcelimits:
                    cpu: 7500m
                    disk: 568 GB
                    gpu: "0"
                    memory: 52 GB
                jobresourcelimits:
                    cpu: 7500m
                    disk: 568 GB
                    gpu: "0"
                    memory: 52 GB
                queueresourcelimits:
                    cpu: 15000m
                    disk: 1.1 TB
                    gpu: "0"
                    memory: 103 GB
                totalresourcelimits:
                    cpu: 7500m
                    disk: 568 GB
                    gpu: "0"
                    memory: 52 GB
  2. Queue 500% system resources:

    Command:

    bacalhau config auto-resources --queue-job-percentage=500

    Config File:

    node:
        compute:
            capacity:
                defaultjobresourcelimits:
                    cpu: 7500m
                    disk: 568 GB
                    gpu: "0"
                    memory: 52 GB
                jobresourcelimits:
                    cpu: 7500m
                    disk: 568 GB
                    gpu: "0"
                    memory: 52 GB
                queueresourcelimits:
                    cpu: 50000m
                    disk: 3.8 TB
                    gpu: "0"
                    memory: 344 GB
                totalresourcelimits:
                    cpu: 7500m
                    disk: 568 GB
                    gpu: "0"
                    memory: 52 GB
  3. With 25% of system resources:

    Command:

    bacalhau config auto-resources  --total-percentage=25 --job-percentage=25 --default-job-percentage=25

    Config File:

    node:
        compute:
            capacity:
                defaultjobresourcelimits:
                    cpu: 2500m
                    disk: 190 GB
                    gpu: "0"
                    memory: 17 GB
                jobresourcelimits:
                    cpu: 2500m
                    disk: 190 GB
                    gpu: "0"
                    memory: 17 GB
                queueresourcelimits:
                    cpu: 15000m
                    disk: 1.1 TB
                    gpu: "0"
                    memory: 103 GB
                totalresourcelimits:
                    cpu: 2500m
                    disk: 190 GB
                    gpu: "0"
                    memory: 17 GB
PreviousConfig OverviewNextConfig Default

Was this helpful?