Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. It shows that the use of such a large and diverse dataset leads to improved robustness to accents, background noise, and technical language. Moreover, it enables transcription in multiple languages, as well as translation from those languages into English. Creators are open-sourcing models and inference code to serve as a foundation for building useful applications and for further research on robust speech processing. In this example, we will transcribe an audio clip locally, containerize the script and then run the container on Bacalhau.
The advantage of using Bacalhau over managed Automatic Speech Recognition services is that you can run your own containers which can scale to do batch process petabytes of videos or audio for automatic speech recognition
We will create a script that accepts parameters (input file path, output file path, temperature, etc.) and set the default parameters. Also if the input file is in mp4 format, then the script converts it to wav format. The transcript can be saved in various formats. Then the large model is loaded and we pass it the required parameters.
This model is not only limited to English and transcription, it supports many other languages.
Next, let's create an openai-whisper script:
#content of the openai-whisper.py fileimport argparseimport osimport sysimport warningsimport whisperfrom pathlib import Pathimport subprocessimport torchimport shutilimport numpy as npparser = argparse.ArgumentParser(description="OpenAI Whisper Automatic Speech Recognition")parser.add_argument("-l",dest="audiolanguage", type=str,help="Language spoken in the audio, use Auto detection to let Whisper detect the language. Select from the following languages['Auto detection', 'Afrikaans', 'Albanian', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Azerbaijani', 'Bashkir', 'Basque', 'Belarusian', 'Bengali', 'Bosnian', 'Breton', 'Bulgarian', 'Burmese', 'Castilian', 'Catalan', 'Chinese', 'Croatian', 'Czech', 'Danish', 'Dutch', 'English', 'Estonian', 'Faroese', 'Finnish', 'Flemish', 'French', 'Galician', 'Georgian', 'German', 'Greek', 'Gujarati', 'Haitian', 'Haitian Creole', 'Hausa', 'Hawaiian', 'Hebrew', 'Hindi', 'Hungarian', 'Icelandic', 'Indonesian', 'Italian', 'Japanese', 'Javanese', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Lao', 'Latin', 'Latvian', 'Letzeburgesch', 'Lingala', 'Lithuanian', 'Luxembourgish', 'Macedonian', 'Malagasy', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Moldavian', 'Moldovan', 'Mongolian', 'Myanmar', 'Nepali', 'Norwegian', 'Nynorsk', 'Occitan', 'Panjabi', 'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', 'Pushto', 'Romanian', 'Russian', 'Sanskrit', 'Serbian', 'Shona', 'Sindhi', 'Sinhala', 'Sinhalese', 'Slovak', 'Slovenian', 'Somali', 'Spanish', 'Sundanese', 'Swahili', 'Swedish', 'Tagalog', 'Tajik', 'Tamil', 'Tatar', 'Telugu', 'Thai', 'Tibetan', 'Turkish', 'Turkmen', 'Ukrainian', 'Urdu', 'Uzbek', 'Valencian', 'Vietnamese', 'Welsh', 'Yiddish', 'Yoruba'] ",default="English")
parser.add_argument("-p",dest="inputpath", type=str,help="Path of the input file",default="/hello.mp3")parser.add_argument("-v",dest="typeverbose", type=str,help="Whether to print out the progress and debug messages. ['Live transcription', 'Progress bar', 'None']",default="Live transcription")
parser.add_argument("-g",dest="outputtype", type=str,help="Type of file to generate to record the transcription. ['All', '.txt', '.vtt', '.srt']",default="All")
parser.add_argument("-s",dest="speechtask", type=str,help="Whether to perform X->X speech recognition (`transcribe`) or X->English translation (`translate`). ['transcribe', 'translate']",default="transcribe")
parser.add_argument("-n",dest="numSteps", type=int,help="Number of Steps",default=50)parser.add_argument("-t",dest="decodingtemperature", type=int,help="Temperature to increase when falling back when the decoding fails to meet either of the thresholds below.",default=0.15 )
parser.add_argument("-b",dest="beamsize", type=int,help="Number of Images",default=5)parser.add_argument("-o",dest="output", type=str,help="Output Folder where to store the outputs",default="")args=parser.parse_args()device = torch.device('cuda:0')print('Using device:', device, file=sys.stderr)Model ='large'whisper_model =whisper.load_model(Model)video_path_local = os.getcwd()+args.inputpathfile_name=os.path.basename(video_path_local)output_file_path=args.outputif os.path.splitext(video_path_local)[1] ==".mp4": video_path_local_wav =os.path.splitext(file_name)[0]+".wav" result = subprocess.run(["ffmpeg", "-i", str(video_path_local), "-vn", "-acodec", "pcm_s16le", "-ar", "16000", "-ac", "1", str(video_path_local_wav)])
# add language parameters# Language spoken in the audio, use Auto detection to let Whisper detect the language.# ['Auto detection', 'Afrikaans', 'Albanian', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Azerbaijani', 'Bashkir', 'Basque', 'Belarusian', 'Bengali', 'Bosnian', 'Breton', 'Bulgarian', 'Burmese', 'Castilian', 'Catalan', 'Chinese', 'Croatian', 'Czech', 'Danish', 'Dutch', 'English', 'Estonian', 'Faroese', 'Finnish', 'Flemish', 'French', 'Galician', 'Georgian', 'German', 'Greek', 'Gujarati', 'Haitian', 'Haitian Creole', 'Hausa', 'Hawaiian', 'Hebrew', 'Hindi', 'Hungarian', 'Icelandic', 'Indonesian', 'Italian', 'Japanese', 'Javanese', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Lao', 'Latin', 'Latvian', 'Letzeburgesch', 'Lingala', 'Lithuanian', 'Luxembourgish', 'Macedonian', 'Malagasy', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Moldavian', 'Moldovan', 'Mongolian', 'Myanmar', 'Nepali', 'Norwegian', 'Nynorsk', 'Occitan', 'Panjabi', 'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', 'Pushto', 'Romanian', 'Russian', 'Sanskrit', 'Serbian', 'Shona', 'Sindhi', 'Sinhala', 'Sinhalese', 'Slovak', 'Slovenian', 'Somali', 'Spanish', 'Sundanese', 'Swahili', 'Swedish', 'Tagalog', 'Tajik', 'Tamil', 'Tatar', 'Telugu', 'Thai', 'Tibetan', 'Turkish', 'Turkmen', 'Ukrainian', 'Urdu', 'Uzbek', 'Valencian', 'Vietnamese', 'Welsh', 'Yiddish', 'Yoruba']
language = args.audiolanguage# Whether to print out the progress and debug messages.# ['Live transcription', 'Progress bar', 'None']verbose = args.typeverbose# Type of file to generate to record the transcription.# ['All', '.txt', '.vtt', '.srt']output_type = args.outputtype# Whether to perform X->X speech recognition (`transcribe`) or X->English translation (`translate`).# ['transcribe', 'translate']task = args.speechtask# Temperature to use for sampling.temperature = args.decodingtemperature# Temperature to increase when falling back when the decoding fails to meet either of the thresholds below.temperature_increment_on_fallback =0.2# Number of candidates when sampling with non-zero temperature.best_of =5# Number of beams in beam search, only applicable when temperature is zero.beam_size = args.beamsize# Optional patience value to use in beam decoding, as in [*Beam Decoding with Controlled Patience*](https://arxiv.org/abs/2204.05424), the default (1.0) is equivalent to conventional beam search.
patience =1.0# Optional token length penalty coefficient (alpha) as in [*Google's Neural Machine Translation System*](https://arxiv.org/abs/1609.08144), set to negative value to uses simple length normalization.
length_penalty =-0.05# Comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations.
suppress_tokens ="-1"# Optional text to provide as a prompt for the first window.initial_prompt =""# if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop.
condition_on_previous_text =True# whether to perform inference in fp16.fp16 =True# If the gzip compression ratio is higher than this value, treat the decoding as failed.compression_ratio_threshold =2.4# If the average log probability is lower than this value, treat the decoding as failed.logprob_threshold =-1.0# If the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence.
no_speech_threshold =0.6verbose_lut ={'Live transcription':True,'Progress bar':False,'None':None}args =dict( language = (Noneif language =="Auto detection"else language), verbose = verbose_lut[verbose], task = task, temperature = temperature, temperature_increment_on_fallback = temperature_increment_on_fallback, best_of = best_of, beam_size = beam_size, patience=patience, length_penalty=(length_penalty if length_penalty>=0.0elseNone), suppress_tokens=suppress_tokens, initial_prompt=(Noneifnot initial_prompt else initial_prompt), condition_on_previous_text=condition_on_previous_text, fp16=fp16, compression_ratio_threshold=compression_ratio_threshold, logprob_threshold=logprob_threshold, no_speech_threshold=no_speech_threshold)temperature = args.pop("temperature")temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")if temperature_increment_on_fallback isnotNone: temperature =tuple(np.arange(temperature, 1.0+1e-6, temperature_increment_on_fallback))else: temperature = [temperature]if Model.endswith(".en")and args["language"]notin{"en","English"}: warnings.warn(f"{Model} is an English-only model but receipted '{args['language']}'; using English instead.") args["language"]="en"video_transcription = whisper.transcribe( whisper_model,str(video_path_local), temperature=temperature,**args,)# Save outputwriting_lut ={'.txt': whisper.utils.write_txt,'.vtt': whisper.utils.write_vtt,'.srt': whisper.utils.write_txt,}if output_type =="All":for suffix, write_suffix in writing_lut.items(): transcript_local_path =os.getcwd()+output_file_path+'/'+os.path.splitext(file_name)[0] +suffixwithopen(transcript_local_path, "w", encoding="utf-8")as f:write_suffix(video_transcription["segments"], file=f)try: transcript_drive_path =file_nameexcept:print(f"**Transcript file created: {transcript_local_path}**")else: transcript_local_path =output_file_path+'/'+os.path.splitext(file_name)[0] +output_typewithopen(transcript_local_path, "w", encoding="utf-8")as f: writing_lut[output_type](video_transcription["segments"], file=f)
To build your own docker container, create a Dockerfile, which contains instructions on how the image will be built, and what extra requirements will be included.
We choose pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime as our base image.
And then install all the dependencies, after that we will add the test audio file and our openai-whisper script to the container, we will also run a test command to check whether our script works inside the container and if the container builds successfully
See more information on how to containerize your script/app here
Since the downloaded video is in mov format we convert the video to mp4 format and then upload it to our public storage in this case IPFS. We will be using NFT.Storage (Recommended Option). To upload your dataset using NFTup just drag and drop your directory it will upload it to IPFS.
After the dataset has been uploaded, copy the CID:
You can download your job results directly by using bacalhau job get. Alternatively, you can choose to create a directory to store your results. In the command below, we created a directory and downloaded our job output to be stored in that directory.